
Dr George Danezis
University College London, UK

 Identity as a proxy to check credentials

 Username decides access in Access Control Matrix

 Sometime it leaks too much information

 Real world examples

 Tickets allow you to use cinema / train

 Bars require customers to be older than 18

▪ But do you want the barman to know your address?

 Usual way:
 Identity provider certifies attributes of a subject.

 Relying Party checks those attributes

 Match credential with live person (biometric)

 Examples:
 E-passport: signed attributes, with lightweight access

control.
▪ Attributes: nationality, names, number, pictures, ...

 Identity Cards: signatures over attributes
▪ Attributes: names, date of birth, picture, address, ...

 The players:
 Issuer (I) = Identity provider
 Prover (P) = Subject
 Verifier (V) = Relying party

 Properties:
 The prover convinces the verifier that he holds a credential

with attributes that satisfy some boolean formula:
▪ Simple example “age=18 AND city=Cambridge”

 Prover cannot lie
 Verifier cannot infer anything else aside the formula
 Anonymity maintained despite collusion of V & I

Issuer

Prover Verifier

1. Issuing protocol:
Prover

gets a certified
credential.

2. Showing Protocol:
Prover makes assertions

about some attributes

Passport
Issuing

Authority

Peggy Victor
(Bar staff

Checking age)
age=25

Name=Peggy,
age=25,
address=Cambridge,
Status=single

Cannot learn
anything

beyond age

 Single-show credential (Brands & Chaum)
 Blind the issuing protocol
 Show the credential in clear
 Multiple shows are linkable – BAD

 Multi-show (Camenisch & Lysyanskaya)
 Random oracle free signatures for issuing (CL)
 Blinded showing

▪ Prover shows that they know a signature over a particular
ciphertext.

 Cannot link multiple shows of the credential
 More complex – BAD

We will
Focus on
these

 Cryptographic preliminaries
 The discrete logarithm problem
 Schnorr’s Identification protocol

▪ Unforgeability, simulator, Fiat-Shamir Heuristic
▪ Generalization to representation

 Showing protocol
 Linear relations of attributes
 AND-connective

 Issuing protocol
 Unlikable issuing
 Efficient proof of a signature.

What is a
Zero-Knowledge

Proof?

 Assume p a large prime
 (>1024 bits—2048 bits)
 Detail: p = qr+1 where q also large prime
 Denote the field of integers modulo p as Zp

 Example with p=5
 Addition works fine: 1+2 = 3, 3+3 = 1, ...
 Multiplication too: 2*2 = 4, 2*3 = 1, ...
 Exponentiation is as expected: 22 = 4

 Choose g in the multiplicative group of Zp

 Such that g is a generator
 Example: g=2

0

1

23

4

2

4

3

1

 Exponentiation is computationally easy:
 Given g and x, easy to compute gx

 But logarithm is computationally hard:
 Given g and gx, difficult to find x = logg gx

 If p is large it is practically impossible

 Related DH problem
 Given (g, gx, gy) difficult to find gxy

 Stronger assumption than DL problem

 Efficient to find inverses
 Given c easy to calculate g-c mod p
▪ (p-1) – c mod p-1

 Efficient to find roots
 Given c easy to find g1/c mod p
▪ c (1/c) = 1 mod (p-1)

 Note the case N=pq (RSA security)

 No need to be scared of this field.

 Exemplary of the zero-knowledge protocols credentials
are based on.

 Players
 Public – g a generator of Zp

 Prover – knows x (secret key)
 Verifier – knows y = gx (public key)

 Aim: the prover convinces the verifier that she knows an x
such that gx = y
 Zero-knowledge – verifier does not learn x!

 Why identification?
 Given a certificate containing y

Peggy
(Prover)

Victor
(Verifier)

Public: g, p
Knows: x Knows: y=gx

P->V: gw = a (witness)

V->P: c (challenge)

P->V: cx+w = r (response)

Check:
gr = yc a

g cx+w = (gx)cgw

Random: w

 Assume that Peggy (Prover) does not know x?

 If, for the same witness, Peggy forges two valid
responses to two of Victor’s challenges

r1 = c1 x + w

r2 = c2 x + w

 Then Peggy must know x

▪ 2 equations, 2 unknowns (x,w) – can find x

 The verifier learns nothing new about x.
 How do we go about proving this?

 Verifier can simulate protocol executions

▪ On his own!

▪ Without any help from Peggy (Prover)

 This means that the transcript gives no
information about x

 How does Victor simulate a transcript?

 (Witness, challenge, response)

 Need to fake a transcript (gw’, c’, r’)
 Simulator:

 Trick: do not follow the protocol order!

 First pick the challenge c’

 Then pick a random response r’
▪ Then note that the response must satisfy:

gr’ = (gx)c’ gw’ -> gw’ = gr’ / (gx)c’

 Solve for gw’

 Proof technique for ZK
 but also important in constructions (OR)

 Schnorr’s protocol
 Requires interaction between Peggy and Victor
 Victor cannot transfer proof to convince Charlie

▪ (In fact we saw he can completely fake a transcript)

 Fiat-Shamir Heuristic
 H[∙] is a cryptographic hash function
 Peggy sets c = H[gw]
 Note that the simulator cannot work any more

▪ gw has to be set first to derive c

 Signature scheme
 Peggy sets c = H[gw, M]

 Traditional Schnorr

 For fixed g, p and public key h = gx

 Peggy proves she knows x such that h = gx

 General problem

 Fix prime p, generators g1, ..., gl

 Public key h’=g1
x1g2

x2 ... gl
xl

 Peggy proves she knows x1, ..., xl such that
h’=g1

x1g2
x2 ... gl

xl

Peggy
(Prover)

Victor
(Verifier)

Public: g, p
Knows: x1, ..., xl

Knows:
h = g1

X1g2
X2 ... gl

Xl

P->V: ∏0<i<l g
wi = a (witness)

V->P: c (challenge)

P->V: r1, ..., rl (response)

Check:

(∏0<i<l gi
ri) = hca

l random: wi

ri = cxi+wi

Let’s convince ourselves: (∏0<i<l gi
ri) = (∏0<i<l gi

xi)c(∏0<i<l gwi) = hc a

Peggy
(Prover)

Victor
(Verifier)

Public: g, p
Knows: x1, ..., xl

Knows:
h = g1

X1g2
X2 ... gl

Xl

P->V: ∏0<i<l g
wi = a (witness)

V->P: c (challenge)

P->V: r1, ..., rl (response)

Check:

(∏0<i<l gi
ri) = hca

l random: wi

ri = cxi+wi

Lets convince ourselves: (∏0<i<l gi
ri) = (∏0<i<l gi

xi)c(∏0<i<l gwi) = hc a

 Relation to DL representation

 Credential representation:
 Attributes xi

 Credential h =g1
X1g2

X2 ... gl
Xl, SigIssuer(h)

 Credential showing protocol
 Peggy gives the credential to Victor (h, SigIssuer(h))
 Discloses only some attributes
 Peggy proves a statement on values xi

▪ Xage = 28 AND xcity = H[Cambridge]

 It always reduces to proving knowledge of a DL
representation.
 But which one?

 To simply disclose attributes
 Cancel them out of the credential
 For Xage = 28 AND xcity = H[Cambridge]

 Proves she know the DL representation of

h/(gage) Xage(gcity) Xcity = h’= ∏3<i<l g
xi

(Also do not forget to check the signature!)

 Remember:
 Attributes xi , i = 1,...,4

 Credential h =g1
x1g2

x2 g3
x3 g4

x4, SigIssuer(h)

 Example relation of attributes:
 (x1 + 2x2 – 10x3 = 13) AND (x2 – 4x3 = 5)

 Implies: (x1 = 2x3+3) AND (x2 = 4x3+5)

 Substitute into h
▪ h = g1

2x3+3 g2
4x3+5 g3

x3 g4
x4= (g1

3g2
5)(g1

2g2
4g3)x3 g4

x4

▪ Implies: h / (g1
3g2

5) = (g1
2g2

4g3)x3 g4
x4

 Example (continued)

 (x1 + 2x2 – 10x3 = 13) AND (x2 – 4x3 = 5)

 Implies: h / (g1
3g2

5) = (g1
2g2

4g3)x3 g4
x4

 How do we prove that in ZK?

 DL representation proof!

▪ h’ = h / (g1
3g2

5)

▪ g1’ = g1
2g2

4g3 g2’ = g4

 Prove that you know x3 and x4

such that h’ = (g1’)x3 (g2’)x4

Peggy
(Prover)

Victor
(Verifier)

Public: g, p
Knows: x1, x2, x3, x4

Knows:
h = g1

X1g2
X2 g3

X3g4
X4

P->V: g1’w1 g2’w2 = a’ (witness)

V->P: c (challenge)

P->V: r1, r2 (response)

Check:

(g1’)r1 (g2’)r2 = (h’)ca

random: w1, w2

r1 = cx3+w1

r2 = cx4+w2

 Reminder
▪ h = g1

X1g2
X2 g3

X3g4
X4

▪ h’ = h / (g1
3g2

5) g1’ = g1
2g2

4g3 g2’ = g4

▪ a = g1’w1 g2’w2 r1 = cx3+w1 r2 = cx4+w1

 Check:

 (g1’)r1 (g2’)r2 = (h’)ca =>
(g1’)(cx3+w1) (g2’)(cx4+w1) = (h / (g1

3g2
5))c g1’w1 g2’w2 =>

(g1
2x3+3g2

4x3+5 g3
x3g4

x4) = h

x1 x2

 Showing any relation implies knowing all
attributes.

 Can make non-interactive (message m)

 c = H[h, m, a’]

 Other proofs:

 (OR) connector (simple concept)

▪ (xage=18 AND xcity=H[Cambridge]) OR (xage=15)

 (NOT) connector

 Inequality (xage > 18)

 Standard tools

 Schnorr – ZK proof of knowledge of discrete log.

 DL rep. – ZK proof of knowledge of
representation.

 Credential showing

 representation + certificate

 ZK proof of linear relations on attributes (AND)

 More reading: (OR), (NOT), Inequality

Issuer

Prover Verifier

1. Issuing protocol:
Prover

gets a certified
credential.

2. Showing Protocol:
Prover makes assertions

about some attributes

Cannot learn
anything

Credential
h =g1

X1g2
X2 ... gl

Xl

SigIssuer(h)

 Issuing: What do we want?
 Peggy authenticates and provides a list of attributes.
 Issue checks all and provides a signed credential.

▪ In the form we discussed previously.

 Peggy needs to do two things:
 Blind the credential.

▪ Multiple times

 Prove that she possesses a valid signature on it.
▪ Without revealing the actual signature.

 Solution: the CL signature scheme.

 Setup:
 Generate and RSA modulus n = pq

(with p=2p’+1, q=2q’+1, p,q,p’,q’ large primes)
 Choose g1 ,…,gl ,b , c

(all of which are quadratic residues)
 Public key = (n, g1 ,…,gl ,b , c);

Private Key = p, q

 Signature:
 Attributes: x1, …, xl

 Pick a random prime e, and random s
 v = (c / ((g1)x1 …(gl)

xl bs)1/e mod n
 Output signature (e, s, v)

▪ Cannot forge because (.)1/e requires knowledge of p, q

 Reminder
 Public: c, gi, b, n
 v = (c / ((g1)x1 …(gl)

xl bs)1/e mod n
 Signature (e, s, v)

 Zero-knowledge DL Rep. Proof:
 Get a random r
 Define v’ = v br

 Reveal: v’
 DL Rep. proof of:

c = (v’)e ((g1)x1 …(gl)
xl bs-er

 c = (v’)e ((g1)x1 …(gl)
xl bs-er

 c = (v br)e ((g1)x1 …(gl)
xl bs b-er

 c = (v)e (bre) ((g1)x1 …(gl)
xl bs b-er

▪ Remember: v = (c / ((g1)x1 …(gl)
xl bs)1/e

 c = ((c / ((g1)x1 …(gl)
xl bs)1/e)e ((g1)x1 …(gl)

xl bs

 c = (c / ((g1)x1 …(gl)
xl bs) ((g1)x1 …(gl)

xl bs

 c = c

Based on Strong RSA assumption:

 Impossible to find a v’

 Without computing (.)1/e

 Which is infeasible without p, q

 Prover does not know p, q (only n)

 Unlikability of signature and showing
 Signature (e,s,v)

 Showing (v’) + ZK proof
▪ V and v’ are unlinkable

▪ Proof does not lean s, e

 Result:
 We can show the credential many times.

 Each time is unlikable to the others.

 One issue – many (unlinkable) uses.

 Putting it all together:
 CL signature proof is already a DL proof:

c = (v’)e ((g1)x1 …(gl)
xl bs-er

 Integrate all previous tricks to reveal or show relations
on attributes.

 E.g. show attributes x1 and x2:
▪ Reveal x1 and x2

▪ Show c / (g1)x1(g2)x2= (v’)e ((g3)x3 …(gl)
xl bs-er

 Credential issuing
 Authentication Authoritzation
 Signing (using CL)

 Showing Credential
 Re-randomize and proof possession of signature
 Integrate proof over attributes

 Further topics
 Transferability of credential
 Double spending

 Attribute based access control

 Federated identity management

 Electronic cash
 (double spending)

 Privacy friendly e-identity
 Id-cards & e-passports

 Multi-show credentials!

 Core:
 Claus P. Schnorr. Efficient signature generation by smart

cards. Journal of Cryptology, 4:161—174, 1991.

 Stefan Brands. Rethinking public key infrastructures and
digital certificates – building in privacy. MIT Press.

 More:
 Jan Camenisch and Markus Stadler. Proof systems for general

statements about discrete logarithms. Technical report TR
260, Institute for Theoretical Computer Science, ETH, Zurich,
March 1997.

 Jan Camenisch and Anna Lysianskaya. A signature scheme
with efficient proofs. (CL signatures)

